Properties of plims
These properties are derived from Slutsky's Theorem.
Let plim Xn​=θ and plim Yn​=ψ. Let c be a constant. Then,
- plim c=c.
- plim Xn​+Yn​=θ+ψ.
- plim Xn​Yn​=θψ.
- plim cXn​=cθ.
- plim Yn​Xn​​=ψθ​. (providedÂ Ïˆî€ =0)
- plim g(Xn​,Yn​)=g(θ,ψ). (assuming it exists and g(.) is cont. diff.)
We can generalize Slutsky’s Theorem to matrices.
Let plim An​=A and plim Bn​=B (element by element). Then,
- plim An−1​=[plim An​]−1=A−1.
- plim (An​Bn​)=plim (An​) plim (Bn​)=AB.