Chebyshev's Inequality
Definitionβ
For any random variable X with a finite mean ΞΌ and a finite non-zero variance Ο2, Chebyshev's Inequality states that for any real number k>0,
P(β£XβΞΌβ£β₯kΟ)β€k21β.
Let Y be a random variable defined as (XβΞΌ)2, hence Y is a non-negative random variable.
Using Markov's inequality with any k>0
P(Yβ₯k2Ο2)P((XβΞΌ)2β₯k2Ο2)P(β£XβΞΌβ£β₯kΟ)P(β£XβΞΌβ£β₯kΟ)P(β£XβΞΌβ£β₯kΟ)ββ€k2Ο2E[Y]ββ€k2Ο2E[(XβΞΌ)2]ββ€k2Ο2Var[X]ββ€k2Ο2Ο2ββ€k21β.β β
Chebyshev's Inequality of the Sample meanβ
Definitionβ
Let Xiβ are i.i.d random variables with variance Ο2 and XΛnβ:=n1ββi=1nβXiβ, then
P(β£XΛnββE[X]β£β₯m)β€m2nΟ2β
for any m>0.
Some algebraic manipulations
E[XΛnβ]Var[XΛnβ]=ΟΛ2Var[XΛnβ]β=ΟΛβ=nnE[X]β=E[X],=Var[n1βi=1βnβXiβ]=n21βVar[i=1βnβXiβ]=n21β(i=1βnβVar[Xiβ])(sinceΒ Xiβ²βsΒ areΒ i.i.d)=nΟ2β=nβΟββ
Since XΛnβ is itself a random variable, Chebyshev's inequality can be written as
P(β£XΛnββE[XΛnβ]β£β₯mkΟΛββ)β€k2ΟΛ2ΟΛ2βP(β£XΛnββE[X]β£β₯m)β€m2nΟ2β.β β
Note: We will use Chebyshev's Inequality of the Sample mean to prove Weak law of large numbers.