Skip to main content

Chebyshev's Inequality

Definition​

For any random variable XX with a finite mean ΞΌ\mu and a finite non-zero variance Οƒ2\sigma^2, Chebyshev's Inequality states that for any real number k>0k > 0,

P(∣Xβˆ’ΞΌβˆ£β‰₯kΟƒ)≀1k2.P(|{X} - \mu|\geq k\sigma)\leq \frac{1}{k^2}.

Proof​

Let YY be a random variable defined as (Xβˆ’ΞΌ)2(X-\mu)^2, hence YY is a non-negative random variable.

Using Markov's inequality with any k>0k>0

P(Yβ‰₯k2Οƒ2)≀E[Y]k2Οƒ2P((Xβˆ’ΞΌ)2β‰₯k2Οƒ2)≀E[(Xβˆ’ΞΌ)2]k2Οƒ2P(∣Xβˆ’ΞΌβˆ£β‰₯kΟƒ)≀Var[X]k2Οƒ2P(∣Xβˆ’ΞΌβˆ£β‰₯kΟƒ)≀σ2k2Οƒ2P(∣Xβˆ’ΞΌβˆ£β‰₯kΟƒ)≀1k2.β– \begin{align*} P(Y \geq k^2\sigma^2)&\leq\frac{\mathbb{E}[Y]}{k^2\sigma^2}\\ P((X-\mu)^2 \geq k^2\sigma^2)&\leq\frac{\mathbb{E}[(X-\mu)^2]}{k^2\sigma^2}\\ P(|X-\mu| \geq k\sigma)&\leq\frac{\mathbb{Var}[X]}{k^2\sigma^2}\\ P(|X-\mu| \geq k\sigma)&\leq\frac{\sigma^2}{k^2\sigma^2}\\ P(|X-\mu| \geq k\sigma)&\leq\frac{1}{k^2}. \hspace{15px} \blacksquare\\ \end{align*}

Chebyshev's Inequality of the Sample mean​

Definition​

Let XiX_i are i.i.d random variables with variance Οƒ2\sigma^2 and XΛ‰n:=1nβˆ‘i=1nXi,\bar{X}_n:=\frac{1}{n}\sum_{i=1}^n X_i, then

P(∣XΛ‰nβˆ’E[X]∣β‰₯m)≀σ2m2nP(|\bar{X}_n - \mathbb{E}[{X}]|\geq m)\leq \frac{\sigma^2}{m^2n}

for any m>0m>0.

Proof​

Some algebraic manipulations

E[XΛ‰n]=nE[X]n=E[X],Var[XΛ‰n]=ΟƒΛ‰2=Var[1nβˆ‘i=1nXi]=1n2Var[βˆ‘i=1nXi]=1n2(βˆ‘i=1nVar[Xi])(sinceΒ Xiβ€²sΒ areΒ i.i.d)=Οƒ2nVar[XΛ‰n]=ΟƒΛ‰=Οƒn\begin{align*} \mathbb{E}[\bar{X}_n]&=\frac{n\mathbb{E}[X]}{n}=\mathbb{E}[X],\\ \mathbb{Var}[\bar{X}_n]=\bar{\sigma}^2&=\mathbb{Var}\Big[\frac{1}{n}\sum_{i=1}^n X_i\Big]\\ &=\frac{1}{n^2}\mathbb{Var}\Big[\sum_{i=1}^n X_i\Big]\\ &=\frac{1}{n^2}\Big(\sum_{i=1}^n\mathbb{Var} [X_i]\Big)\hspace{20px}\text{(since } X_i's\text{ are i.i.d)}\\ &=\frac{\sigma^2}{n}\\ \sqrt{\mathbb{Var}[\bar{X}_n]}=\bar{\sigma}&=\frac{\sigma}{\sqrt{n}} \end{align*}

Since Xˉn\bar{X}_n is itself a random variable, Chebyshev's inequality can be written as

P(∣XΛ‰nβˆ’E[XΛ‰n]∣β‰₯kΟƒΛ‰βŸm)≀σˉ2k2ΟƒΛ‰2P(∣XΛ‰nβˆ’E[X]∣β‰₯m)≀σ2m2n.β– \begin{align*} P\Big(|\bar{X}_n - \mathbb{E}[\bar{X}_n]|\geq \underbrace{k\bar{\sigma}}_{m}\Big)\leq \frac{\bar{\sigma}^2}{k^2\bar{\sigma}^2}\\ P\Big(|\bar{X}_n - \mathbb{E}[{X}]|\geq m\Big)\leq \frac{{\sigma}^2}{m^2n}. \hspace{20px}\blacksquare\\ \end{align*}

Note: We will use Chebyshev's Inequality of the Sample mean to prove Weak law of large numbers.