Skip to main content

Large Sample Distribution Theory

Convergence in Probabilityā€‹

Definitionā€‹

The random variable XnX_n converges in probability to a constant cc if

limā”nā†’āˆžĀ ProbĀ (āˆ£Xnāˆ’cāˆ£>Īµ)=0\lim_{n\to \infty}\text{ Prob }(|X_n-c|>\varepsilon)=0

for any positive Īµ\varepsilon.

If XnX_n converges in probability to cc, then we write

plimĀ Xn=c.\text{plim }X_n=c.

Another way to write is the following

limā”nā†’āˆžXnā†’pc,\lim_{n\to\infty} {X}_n\xrightarrow{p}c,

or

Xnā†’pc.{X}_n\xrightarrow{p}c.

Exampleā€‹

Let Xnāˆ¼Ā Exponential(n)X_n \sim \text{ Exponential}(n), show that Xnā†’p0{X}_n\xrightarrow{p}0.

Hint: CDF of Xnāˆ¼Ā Exponential(Ī»)X_n \sim \text{ Exponential}(\lambda) id given as

F(x;Ī»)={1āˆ’eāˆ’Ī»xxā‰„0,0x<0F(x;\lambda)= \begin{cases} 1- e^{-\lambda x} & x\geq 0, \\ 0 &x< 0 \\ \end{cases}

Solution:

Using the definition of convergence in probability, we have

limā”nā†’āˆžProb(āˆ£Xnāˆ’0āˆ£>Īµ)=limā”nā†’āˆžProb(Xn>Īµ)(sinceĀ Xnā‰„0)=limā”nā†’āˆžeāˆ’nĪµ(sinceĀ Xnāˆ¼Ā Exponential(n))=0,āˆ€Īµ>0.\begin{align*} \lim_{n\to \infty}\text{Prob}(|X_n-0|>\varepsilon) &= \lim_{n\to \infty}\text{Prob}(X_n>\varepsilon) &\hspace{50px}\text{(since } X_n\geq0)\\ &= \lim_{n\to \infty}e^{-n\varepsilon} &\hspace{50px}\text{(since } X_n \sim \text{ Exponential}(n))\\ &=0, \forall \varepsilon>0. \end{align*}

Convergence in Distributionā€‹

Definitionā€‹

A sequence of random variables X1,X2,X3,ā‹ÆX_1, X_2, X_3,\cdots converges in distribution to a random variable XX, shown by Xnā†’dXX_n\xrightarrow{d}X, if,

limā”nā†’āˆžFXn(x)=FX(x),\lim_{n\to \infty}F_{X_n}(x)=F_X(x),

for all xx at which FX(x)F_X(x) is continuous.

Limiting Distributionā€‹

If XnX_n converges in distribution to XX, where FXn(x)F_{X_n}(x) is the CDF of XnX_n, then FX(x)F_X(x) is the limiting distribution of XnX_n.

Exampleā€‹

Let X1,X2,X3,ā‹ÆX_1,X_2, X_3,\cdots be a sequence of random variable such that

FXn(x)={1āˆ’(1āˆ’1n)nxxā‰„00otherwiseF_{X_n}(x)= \begin{cases} 1-\Big(1-\frac{1}{n}\Big)^{nx} & x\geq 0 \\ 0 & \text{otherwise} \\ \end{cases}

Show that XnX_n converges in distribution to Exponential(1)\text{Exponential(1)}.

Solution:

Let Xāˆ¼Exponential(1)Xāˆ¼\text{Exponential(1)}.
For xā‰¤0x\leq0, we have

FXn(x)=FX(x)=0,Ā forĀ n=2,3,4,ā‹Æā€‰.F_{X_n}(x)=F_X(x)=0, \hspace{15px} \text{ for n}=2,3,4,\cdots.

For xā‰„0x\geq0, we have

limā”nā†’āˆžFXn(x)=limā”nā†’āˆž(1āˆ’(1āˆ’1n)nx)=1āˆ’limā”nā†’āˆž(1āˆ’1n)nx=1āˆ’eāˆ’x=FX(x),āˆ€x.\begin{align*} \lim_{n\to \infty}F_{X_n}(x)&=\lim_{n\to \infty}\Big(1āˆ’\Big(1āˆ’\frac{1}{n}\Big)^{nx}\Big)\\ &=1āˆ’\lim_{n\to\infty}\Big(1āˆ’\frac{1}{n}\Big)^{nx}\\ &=1āˆ’e^{āˆ’x}\\ &=F_X(x), \forall x. \end{align*}

Thus, we conclude that Xnā†’dXX_n \xrightarrow{d}X.