Large Sample Distribution Theory
Convergence in Probabilityā
Definitionā
The random variable Xnā converges in probability to a constant c if
nāālimāĀ ProbĀ (ā£Xnāācā£>Īµ)=0
for any positive Īµ.
If Xnā converges in probability to c, then we write
plimĀ Xnā=c.
Another way to write is the following
nāālimāXnāpāc,
or
Xnāpāc.
Exampleā
Let Xnāā¼Ā Exponential(n), show that Xnāpā0.
Hint: CDF of Xnāā¼Ā Exponential(Ī») id given as
F(x;Ī»)={1āeāĪ»x0āxā„0,x<0āSolution:
Using the definition of convergence in probability, we have
nāālimāProb(ā£Xnāā0ā£>Īµ)ā=nāālimāProb(Xnā>Īµ)=nāālimāeānĪµ=0,āĪµ>0.ā(sinceĀ Xnāā„0)(sinceĀ Xnāā¼Ā Exponential(n))ā
Convergence in Distributionā
Definitionā
A sequence of random variables X1ā,X2ā,X3ā,āÆ converges in distribution to a random variable X, shown by XnādāX, if,
nāālimāFXnāā(x)=FXā(x),
for all x at which FXā(x) is continuous.
Limiting Distributionā
If Xnā converges in distribution to X, where FXnāā(x) is the CDF of Xnā, then FXā(x) is the limiting distribution of Xnā.
Exampleā
Let X1ā,X2ā,X3ā,āÆ be a sequence of random variable such that
FXnāā(x)={1ā(1ān1ā)nx0āxā„0otherwiseāShow that Xnā converges in distribution to Exponential(1).
Solution:
Let Xā¼Exponential(1).
For xā¤0, we have
FXnāā(x)=FXā(x)=0,Ā forĀ n=2,3,4,āÆ.For xā„0, we have
nāālimāFXnāā(x)ā=nāālimā(1ā(1ān1ā)nx)=1ānāālimā(1ān1ā)nx=1āeāx=FXā(x),āx.āThus, we conclude that XnādāX.