Skip to main content

Central Limit Theorem

Definition

Let X1,X2,,XnX_1, X_2,\cdots, X_n be i.i.d. random variables with expected value E[Xi]=μ<\mathbb{E}[X_i]=\mu < \infty and variance 0<Var(Xi)=σ2<0<\mathbb{Var}(X_i)=\sigma^2<\infty. Then, the random variable

Zn=n(Xˉnμ)σ=nσ(1ni=1nXiμ)\begin{align*} Z_n=\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}&=\frac{\sqrt{n}}{\sigma}\Big(\frac{1}{n}\sum_{i=1}^nX_i-\mu\Big)\\ \end{align*}

converges in distribution to the standard normal random variable as nn\to \infty, that is

limnP(Znx)=Φ(x),xR,\lim_{n\to \infty}P(Z_n\leq x)=\Phi(x),\hspace{15px}\forall x\in \mathbb{R},

where Φ(x)\Phi(x) is the standard normal CDF.

Proof