Skip to main content

Markov's Inequality

Definition​

If XX is a non-negative random variable and a>0a > 0, then the probability that XX is at least aa is at most the expectation of XX divided by a.a.

Mathematically

P(X≥a)≤E[X]a.P(X\geq a) \leq \frac{\mathbb{E}[X]}{a}.

Proof​

E[X]:=∫−∞∞xfX(x)dx\begin{align*} \mathbb{E}[X]:&=\int_{-\infin}^{\infty}x f_X(x) dx\\ \end{align*}

since XX is non-negative

E[X]=∫0∞xfX(x)dx\begin{align*} \mathbb{E}[X]&=\int_{0}^{\infty}x f_X(x) dx\\ \end{align*}

for any a>0a>0

E[X]≥∫a∞xfX(x)dx\begin{align*} \mathbb{E}[X]&\geq \int_{a}^{\infty}x f_X(x) dx\\ \end{align*}

since x>ax>a in the integrated region

E[X]≥∫a∞xfX(x)dx≥∫a∞afX(x)dx≥a∫a∞fX(x)dx≥aP(X≥a)  ⟹  P(X≥a)≤E[X]a.■\begin{align*} \mathbb{E}[X]&\geq \int_{a}^{\infty}x f_X(x) dx\geq \int_{a}^{\infty}a f_X(x) dx\\ &\geq a\int_{a}^{\infty} f_X(x) dx\\ &\geq aP(X\geq a)\\ \implies P(X\geq a) &\leq \frac{\mathbb{E}[X]}{a}. \hspace{15px} \blacksquare \end{align*}

Note: We will use Markov's Inequality to prove Chebyshev's Inequality.

Example​

Let XX is a random variable representing the income of an individual in the population. Since XX is income, it can not be negative.

Markov's inequality can be written as

P(X≥mE[X])≤E[X]mE[X]≤1m.\begin{align*} P(X\geq m \mathbb{E}[X]) &\leq \frac{\mathbb{E}[X]}{m \mathbb{E}[X]}\\ &\leq \frac{1}{m}. \end{align*}

Let m=5m=5

P(X≥5E[X])≤20%\begin{align*} P(X\geq 5 \mathbb{E}[X]) &\leq 20\%\\ \end{align*}

This inequality states that the proportion of the population with an income more than 55 times the average is at most 20%20\%. In other words, no more than 20%20\% of the population can earn more than 55 times the average income.