Unbiasedness and Variance
OLS estimator is Unbiased
We have
b=(X′X)−1X′y,=(X′X)−1X′(Xβ+ε),=β+(X′X)−1X′ε,
taking expectation both sides, we get
E[b∣X]=E[β∣X]+E[(X′X)−1X′ε∣X],=β+(X′X)−1X′=0E[ε∣X],=β.
Variance of OLS estimator
We have
b⟹b−β=β+=A(X′X)−1X′ε,=β+Aε,=Aε.
Since b is a vector of dimension (K×1)
Var(b)=Var(b0)Cov(b1,b0)Cov(b2,b0)...Cov(bK,b0)Cov(b0,b1)Var(b1)Cov(b2,b1)...Cov(bK,b1)Cov(b0,b2)Cov(b1,b2)Var(b2)...Cov(bK,b2).....................Cov(b0,bK)Cov(b1,bK)Cov(b2,bK)...Var(bK)(K×K),=E[(b0−β0)2]E[(b1−β1)(b0−β0)]E[(b2−β2)(b0−β0)]...E[(bK−βK)(b0−β0)]E[(b0−β0)(b1−β1)]E[(b1−β1)2]E[(b2−β2)(b1−β1)]...E[(bK−βK)(b1−β1)]E[(b0−β0)(b2−β2)]E[(b1−β1)(b2−β2)]E[(b2−β2)2]...E[(bK−βK)(b2−β2)].....................E[(b0−β0)(bK−βK)]E[(b1−β1)(bK−βK)]E[(b2−β2)(bK−βK)]...E[(bK−βK)2](K×K),=E[(b0−β0)2][(b1−β1)(b0−β0)][(b2−β2)(b0−β0)]...[(bK−βK)(b0−β0)][(b0−β0)(b1−β1)][(b1−β1)2][(b2−β2)(b1−β1)]...[(bK−βK)(b1−β1)][(b0−β0)(b2−β2)][(b1−β1)(b2−β2)][(b2−β2)2]...[(bK−βK)(b2−β2)].....................[(b0−β0)(bK−βK)][(b1−β1)(bK−βK)][(b2−β2)(bK−βK)]...[(bK−βK)2](K×K),=E[(b−β)(b−β)′],=E[Aεε′A′].
Var(b∣X)=E[Aεε′A′∣X],=AE[εε′∣X]A′.
Given E[ε]=0