Skip to main content

Consistency of OLS estimator

Consider the model

y=Xβ+ε.\bold{y=X}\boldsymbol{\beta+\varepsilon}.

The OLS estimator b\bold{b} of β\boldsymbol{\beta} is

b=(XX)1Xy.\bold{b=(X'X)^{-1}X'y}.

To prove: plim b=β.\text{plim }\bold{b}=\boldsymbol{\beta}.

Proof:

plim b=plim {(XX)1Xy}=plim {(XX)1X(Xβ+ε)}=plim {β+(XX)1Xε}=plim β+plim {(XX)1Xε}=β+plim {(XX)1} plim {Xε}\begin{align*} \text{plim }\bold{b}&=\text{plim }\{\bold{(X'X)^{-1}X'y}\}\\ &=\text{plim }\{\bold{(X'X)^{-1}X'(X}\boldsymbol{\beta+\varepsilon})\}\\ &=\text{plim }\{\boldsymbol{\beta}+\bold{(X'X)^{-1}X'}\boldsymbol{\varepsilon}\}\\ &=\text{plim }\boldsymbol{\beta}+\text{plim }\{\bold{(X'X)^{-1}X'}\boldsymbol{\varepsilon}\}\\ &=\boldsymbol{\beta}+\text{plim }\{\bold{(X'X)^{-1}}\}\text{ plim }\{\bold{X'}\boldsymbol{\varepsilon}\}\\ \end{align*}

multiplying and dividing by N, we get

plim b=β+plim {(XXN)1}term 1 plim {XεN}term 2.\begin{align*} \text{plim }\bold{b}&=\boldsymbol{\beta}+\underbrace{\text{plim }\{\Big(\frac{\bold{X'X}}{N}\Big)^{-1}\}}_{\text{term 1}}\underbrace{\text{ plim }\{\frac{\bold{X'}\boldsymbol{\varepsilon}}{N}\}}_{\text{term 2}}.\\ \end{align*}

Let's analyze term 1\text{term 1} first

1NXX=1N[x11x1Nxk1xkN]k×N[x11xk1x1NxkN]N×k=1N[C1,C1C1,C2C1,CkCk,C1Ck,C2Ck,Ck]k×k\begin{align*} \frac{1}{N}\bold{X'X}= \frac{1}{N} \begin{bmatrix} x_{11} & \cdots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{k1} & \cdots & x_{kN} \end{bmatrix}_{k\times N} \begin{bmatrix} x_{11} & \cdots & x_{k1} \\ \vdots & \ddots & \vdots \\ x_{1N} & \cdots & x_{kN} \end{bmatrix}_{N\times k}= \frac{1}{N} \begin{bmatrix} \langle C_1,C_1 \rangle & \langle C_1,C_2 \rangle & \cdots & \langle C_1,C_k \rangle \\ \vdots& \vdots & \ddots & \vdots \\ \langle C_k,C_1 \rangle &\langle C_k,C_2 \rangle& \cdots & \langle C_k,C_k \rangle \end{bmatrix}_{k\times k} \end{align*}

where Cm,Cm\langle C_m,C_m \rangle is the inner product of column mm and column nn of matrix X.\bold{X}. Therefore

1NC1,C1=1Ni=1Nx1i2 and 1NCm,Cn=1Ni=1Nxmixni.\begin{align*} \frac{1}{N}\langle C_1,C_1 \rangle&=\frac{1}{N}\sum_{i=1}^Nx_{1i}^2\text{ and }\\ \frac{1}{N}\langle C_m,C_n \rangle&=\frac{1}{N}\sum_{i=1}^Nx_{mi}x_{ni}.\\ \end{align*}

Applying Weak Law of Large Numbers

plim (1NXX)=plim (1N[C1,C1C1,C2C1,CkCk,C1Ck,C2Ck,Ck]k×k)=E[C12C1C2C1CkCkC1CkC2Ck2]k×k=E[xixi].\begin{align*} \text{plim }\Big(\frac{1}{N}\bold{X'X}\Big)&=\text{plim }\Bigg( \frac{1}{N} \begin{bmatrix} \langle C_1,C_1 \rangle & \langle C_1,C_2 \rangle & \cdots & \langle C_1,C_k \rangle \\ \vdots& \vdots & \ddots & \vdots \\ \langle C_k,C_1 \rangle &\langle C_k,C_2 \rangle& \cdots & \langle C_k,C_k \rangle \end{bmatrix}_{k\times k}\Bigg)\\ &=\mathbb{E} \begin{bmatrix} C_1^2 & C_1\cdot C_2 & \cdots & C_1\cdot C_k \\ \vdots& \vdots & \ddots & \vdots \\ C_k\cdot C_1 &C_k\cdot C_2& \cdots & C_k^2 \end{bmatrix}_{k\times k}\\ &=\mathbb{E}[\bold{x_i}\bold{x_i'}]. \end{align*}

We know that XXN\frac{\bold{X'X}}{N} is a positive definite matrix. Let's assume that

plim (1NXX)=Q~, a positive definite matrix\begin{align*} \text{plim }\Big(\frac{1}{N}\bold{X'X}\Big)&=\bold{\tilde{Q}}\text{, a positive definite matrix} \end{align*}

Since Q~\bold{\tilde{Q}} is a positive definite matrix, it's inverse exists.

Using plim property

plim (1NXX)1={plim (1NXX)}1=Q~1.\begin{align*} \text{plim }\Big(\frac{1}{N}\bold{X'X}\Big)^{-1}&=\Big\{\text{plim }\Big(\frac{1}{N}\bold{X'X}\Big)\Big\}^{-1}=\bold{\tilde{Q}^{-1}}.\tag{1} \end{align*}

Now let's analyze term 2\text{term 2}

XεN=1N[x11x1Nxk1xkN][ε1εN]=1N[x11ε1++x1NεNxk1ε1++xkNεN].\begin{align*} \frac{\bold{X'}\boldsymbol{\varepsilon}}{N}=\frac{1}{N} \begin{bmatrix} x_{11} & \cdots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{k1} & \cdots & x_{kN} \end{bmatrix} \begin{bmatrix} \varepsilon_1\\ \vdots\\ \varepsilon_N \end{bmatrix}=\frac{1}{N} \begin{bmatrix} x_{11}\varepsilon_1+\cdots+x_{1N}\varepsilon_N\\ \vdots\\ x_{k1}\varepsilon_1+\cdots+x_{kN}\varepsilon_N\\ \end{bmatrix}. \end{align*}

Given

xi=[x1ixki]\bold{x_i}= \begin{bmatrix} x_{1i}\\ \vdots\\ x_{ki} \end{bmatrix} XεN=1N[x11ε1++x1NεNxk1ε1++xkNεN]=1Ni=1Nxiεi.\begin{align*} \frac{\bold{X'}\boldsymbol{\varepsilon}}{N}=\frac{1}{N} \begin{bmatrix} x_{11}\varepsilon_1+\cdots+x_{1N}\varepsilon_N\\ \vdots\\ x_{k1}\varepsilon_1+\cdots+x_{kN}\varepsilon_N\\ \end{bmatrix}=\frac{1}{N} \sum_{i=1}^N \bold{x_i}\varepsilon_i. \end{align*}

Applying Weak Law of Large Numbers

plim XεN=plim 1Ni=1Nxiεi=E[xiεi].\begin{align*} \text{plim }\frac{\bold{X'}\boldsymbol{\varepsilon}}{N}=\text{plim }\frac{1}{N} \sum_{i=1}^N \bold{x_i}\varepsilon_i=\mathbb{E}[\bold{x_i}\varepsilon_i]. \end{align*}

Using Law of Iterated Expectations

E[xiεi]=EX[E[xiεiX]]=EX[xiE[εiX]]=EX[xi0]=0.\begin{align*} \mathbb{E}[\bold{x_i}\varepsilon_i]&=\mathbb{E}_{\bold{X}}[\mathbb{E}[\bold{x_i}\varepsilon_i|\bold{X}]]\\ &=\mathbb{E}_{\bold{X}}[\bold{x_i}\mathbb{E}[\varepsilon_i|\bold{X}]]\\ &=\mathbb{E}_{\bold{X}}[\bold{x_i}0]\\ &=\bold{0}. \end{align*}

This implies

plim XεN=0.\begin{align*} \text{plim }\frac{\bold{X'}\boldsymbol{\varepsilon}}{N}=\bold{0}.\tag{2} \end{align*}

Using (1)(1) and (2)(2)

plim b=β+plim {(XXN)1}Q~1 plim {XεN}0.=β.\begin{align*} \text{plim }\bold{b}&=\boldsymbol{\beta}+\underbrace{\text{plim }\{\Big(\frac{\bold{X'X}}{N}\Big)^{-1}\}}_{\bold{\tilde{Q}^{-1}}}\underbrace{\text{ plim }\{\frac{\bold{X'}\boldsymbol{\varepsilon}}{N}\}}_{\bold{0}}.\\ &=\boldsymbol{\beta}.\hspace{20px}\blacksquare \end{align*}