Consistency of OLS estimator
Consider the model
y=Xβ+ε.
The OLS estimator b of β is
b=(X′X)−1X′y.
To prove: plim b=β.
Proof:
plim b=plim {(X′X)−1X′y}=plim {(X′X)−1X′(Xβ+ε)}=plim {β+(X′X)−1X′ε}=plim β+plim {(X′X)−1X′ε}=β+plim {(X′X)−1} plim {X′ε}
multiplying and dividing by N, we get
plim b=β+term 1plim {(NX′X)−1}term 2 plim {NX′ε}.
Let's analyze term 1 first
N1X′X=N1x11⋮xk1⋯⋱⋯x1N⋮xkNk×Nx11⋮x1N⋯⋱⋯xk1⋮xkNN×k=N1⟨C1,C1⟩⋮⟨Ck,C1⟩⟨C1,C2⟩⋮⟨Ck,C2⟩⋯⋱⋯⟨C1,Ck⟩⋮⟨Ck,Ck⟩k×k
where ⟨Cm,Cm⟩ is the inner product of column m and column n of matrix X. Therefore
N1⟨C1,C1⟩N1⟨Cm,Cn⟩=N1i=1∑Nx1i2 and =N1i=1∑Nxmixni.
Applying Weak Law of Large Numbers
plim (N1X′X)=plim (N1⟨C1,C1⟩⋮⟨Ck,C1⟩⟨C1,C2⟩⋮⟨Ck,C2⟩⋯⋱⋯⟨C1,Ck⟩⋮⟨Ck,Ck⟩k×k)=EC12⋮Ck⋅C1C1⋅C2⋮Ck⋅C2⋯⋱⋯C1⋅Ck⋮Ck2k×k=E[xixi′].
We know that NX′X is a positive definite matrix. Let's assume that
plim (N1X′X)=Q~, a positive definite matrix
Since Q~ is a positive definite matrix, it's inverse exists.
Using plim property
plim (N1X′X)−1={plim (N1X′X)}−1=Q~−1.(1)
Now let's analyze term 2
NX′ε=N1x11⋮xk1⋯⋱⋯x1N⋮xkNε1⋮εN=N1x11ε1+⋯+x1NεN⋮xk1ε1+⋯+xkNεN.
Given
xi=x1i⋮xki
NX′ε=N1x11ε1+⋯+x1NεN⋮xk1ε1+⋯+xkNεN=N1i=1∑Nxiεi.
Applying Weak Law of Large Numbers
plim NX′ε=plim N1i=1∑Nxiεi=E[xiεi].
Using Law of Iterated Expectations
E[xiεi]=EX[E[xiεi∣X]]=EX[xiE[εi∣X]]=EX[xi0]=0.
This implies
plim NX′ε=0.(2)
Using (1) and (2)
plim b=β+Q~−1plim {(NX′X)−1}0 plim {NX′ε}.=β.■