Skip to main content

Consistency of Var(b|X)

We have

σ^2=ee(NK)=εMε(NK)=ε[INX(XX)1X]ε(NK)=εεεX(XX)1Xε(NK)\begin{align*} \hat{\sigma}^2=\frac{\bold{e'e}}{(N-K)}&=\frac{\boldsymbol{\varepsilon'}\bold{M}\boldsymbol{\varepsilon}}{(N-K)}\\ &=\frac{\boldsymbol{\varepsilon'}[\bold{I_N-X(X'X)^{-1}X'}]\boldsymbol{\varepsilon}}{(N-K)}\\ &=\frac{\boldsymbol{\varepsilon'}\boldsymbol{\varepsilon}-\boldsymbol{\varepsilon'}\bold{X(X'X)^{-1}X'}\boldsymbol{\varepsilon}}{(N-K)}\\ \end{align*}

Let's check the consistency of σ^2\hat{\sigma}^2 first

plim σ^2=plim {εεεX(XX)1Xε(NK)}=plim {N(NK)[εεN(εXN)(XXN)1(XεN)]}=plim (NNK) plim (εεN(εXN)(XXN)1(XεN))=1 plim (εεN(εXN)(XXN)1(XεN))=plim (εεN)[ plim (εXN) plim (XXN)1Q~1 plim (XεN)=0]. plim (εXN)=plim(1N[i=1Nεix1ii=1Nεix2ii=1Nεixki]1×k).\begin{align*} \text{plim }\hat{\sigma}^2&=\text{plim }\Big\{ \frac{\boldsymbol{\varepsilon'}\boldsymbol{\varepsilon}-\boldsymbol{\varepsilon'}\bold{X(X'X)^{-1}X'}\boldsymbol{\varepsilon}}{(N-K)}\Big\}\\ &=\text{plim }\Big\{\frac{N}{(N-K)}\Big[\frac{\boldsymbol{\varepsilon'\varepsilon}}{N}-\Big(\frac{\boldsymbol{\varepsilon'}\bold{X}}{N}\Big)\Big(\frac{\bold{X'X}}{N}\Big)^{-1}\Big(\frac{\bold{X'}\boldsymbol{\varepsilon}}{N}\Big)\Big]\Big\}\\ &=\text{plim }\Big(\frac{N}{N-K}\Big)\text{ plim }\Big(\frac{\boldsymbol{\varepsilon'\varepsilon}}{N}-\Big(\frac{\boldsymbol{\varepsilon'}\bold{X}}{N}\Big)\Big(\frac{\bold{X'X}}{N}\Big)^{-1}\Big(\frac{\bold{X'}\boldsymbol{\varepsilon}}{N}\Big)\Big)\\ &=1\cdot\text{ plim }\Big(\frac{\boldsymbol{\varepsilon'\varepsilon}}{N}-\Big(\frac{\boldsymbol{\varepsilon'}\bold{X}}{N}\Big)\Big(\frac{\bold{X'X}}{N}\Big)^{-1}\Big(\frac{\bold{X'}\boldsymbol{\varepsilon}}{N}\Big)\Big)\\ &=\text{plim }\Big(\frac{\boldsymbol{\varepsilon'\varepsilon}}{N}\Big)-\Big[\text{ plim }\Big(\frac{\boldsymbol{\varepsilon'}\bold{X}}{N}\Big)\underbrace{\text{ plim }\Big(\frac{\bold{X'X}}{N}\Big)^{-1}}_{\bold{\tilde{Q}^{-1}}}\underbrace{\text{ plim }\Big(\frac{\bold{X'}\boldsymbol{\varepsilon}}{N}\Big)}_{=\bold{0}}\Big].\\ \text{ plim }\Big(\frac{\boldsymbol{\varepsilon'}\bold{X}}{N}\Big) &=\text{plim}\Big(\frac{1}{N} \begin{bmatrix} \sum_{i=1}^N\varepsilon_ix_{1i}&\sum_{i=1}^N\varepsilon_ix_{2i}\cdots\sum_{i=1}^N\varepsilon_ix_{ki} \end{bmatrix}_{1\times k}\Big). \end{align*}

Using Weak Law of Large Numbers

 plim (εXN)=0.\begin{align*} \text{ plim }\Big(\frac{\boldsymbol{\varepsilon'}\bold{X}}{N}\Big) &=\bold{0}. \end{align*}

Hence

plim σ^2=plim (εεN)=plim (1Ni=1Nεi2)=E[εi2]=σ2\begin{align*} \text{plim }\hat{\sigma}^2&=\text{plim }\Big(\frac{\boldsymbol{\varepsilon'\varepsilon}}{N}\Big)\\ &=\text{plim }\Big(\frac{1}{N}\sum_{i=1}^N\varepsilon_i^2\Big)\\ &=\mathbb{E}[\varepsilon_i^2]\\ &=\sigma^2 \end{align*}

Ques: Find plim Var(bX).\text{plim }\mathbb{Var}\bold{(b|X)}.